AN EXTREMAL PROBLEM IN GRAPH THEORY

BY

A. RAMACHANDRA RAO

ABSTRACT

It is proved that the maximum number of cut-vertices in a connected graph with n vertices and m edges is

$$\max\left\{q:m\leq \binom{n-q}{2}+q\right\}.$$

All the extremal graphs are determined and the corresponding problem for cut-edges is also solved.

In this paper we determine the maximum number of cut-vertices in a connected graph on n vertices with m edges and also the class of all extremal graphs, i.e., graphs which attain this maximum. The analogous problem for cut-edges is also solved.

All graphs considered here are finite, undirected and without multiple edges or loops.

For notation and terminology C. Berge [1] is followed.

We will use the term cut-vertex (edge) for an articulation vertex (edge) of [1]. A block of a connected graph G is a subgraph of G which is maximal with respect to the property of being connected and having no cut-vertex.

§1. Maximisation of the number of cut-vertices.

We start with a few preliminary results.

LEMMA 1.1. A connected graph on n vertices $(n \ge 2)$ has at most n - 2 cut-vertices. Further, the only such graph with n-2 cut-vertices is the elementary chain on n vertices.

This lemma can be easily proved by using the concept of a spanning tree.

THEOREM 1.2. In a connected graph on n vertices with r cut-vertices, the maximum number of edges is $\binom{n-r}{2} + r$.

Proof. Let G be a connected graph on n vertices with r cut-vertices and with the maximum number of edges. Then obviously every block of G is complete and the number t of blocks is not less than r + 1. Let n_i be the number of vertices in the *i*th block for $i = 1, 2, \dots, t$. Then $n_i \ge 2$ and it can be easily proved by induction on t that

$$\sum_{i=1}^{t} n_i = n + t - 1.$$

Received May 26, 1967, and in revised form May 17, 1968.

Thus the number of edges in G is not more than

$$\max\left\{\sum_{i=1}^{t} \binom{n_i}{2} : \sum_{i=1}^{t} n_i = n + t - 1, \ n_i \ge 2, \ t \ge r + 1\right\}$$
$$= \max_{\substack{t \ge r+1 \\ t \ge r+1}} \left\{t - 1 + \binom{n+t-1-2t+2}{2}\right\}$$
$$= \binom{n-r}{2} + r.$$

But a complete graph on n-r vertices with an attached elementary chain of length r has n vertices, $\binom{n-r}{2} + r$ edges and r cut-vertices. This completes the proof of the theorem.

Given n, m such that $n \leq m \leq \binom{n}{2}$, let us define

(1.1)
$$r(n,m) = \max \left\{ q \colon q \leq n-3 \text{ and } m \leq \binom{n-q}{2} + q \right\}.$$

We assume below that $m \ge n$ as the case m = n - 1 is trivial and is treated completely in Lemma 1.1.

THEOREM 1.3. The maximum number of cut-vertices in a connected graph on n vertices with m edges is r = r(n,m) given by (1.1).

Proof. By Theorem 1.2, if a connected graph G on n vertices has r+1 or more cut-vertices then the number of edges in G is not more than

$$\binom{n-r-1}{2}+r+1 < m.$$

Hence the number of cut-vertices in any connected graph on n vertices with m edges is not more than r. To construct a connected graph with n vertices, m edges and exactly r cut-vertices, take any biconnected graph on n - r vertices with m - r edges

$$\left(n-r\leq m-r\leq \binom{n-r}{2}\right),$$

and attach to one of its vertices an elementary chain of length r. This proves the theorem.

Now we determine the extremal graphs, i.e., connected graphs on n vertices with m edges and with r(n,m) cut-vertices.

LEMMA 1.4. In an extremal graph G there cannot be more than 2 pieces with respect to any cut-vertex.

Vol. 6, 1968 AN EXTREMAL PROBLEM IN GR APH THEORY

Proof. If there are at least 3 pieces with respect to a cut-vertex x of G, we can remove one of the pieces (without the vertex x itself) and attach it at a non-cut-vertex of the remaining graph, thereby increasing the number of cut-vertices. The impossibility of this proves the lemma.

LEMMA 1.5. The graph G consisting of two complete graphs, each on more than 3 vertices, attached by a common vertex, is not extremal.

Proof. Let r, s be the numbers of vertices in the two complete subgraphs of G so that the number n of vertices in G is r + s - 1. Then the number of edges in G is not more than

$$\max_{\substack{(r,s \ge 4, \\ r+s=n+1}} \left\{ \binom{r}{2} + \binom{s}{2} \right\} \\ = \binom{4}{2} + \binom{n-3}{2} = \binom{n-2}{2} + 2 + 7 - n.$$

Hence if G is extremal, then by Theorem 1.3 G has at least 2 cut-vertices, a contradiction.

LEMMA 1.6. An extremal graph G without any cut-edge has at most one cut-vertex.

Proof. Adding new edges if necessary we make every block of G complete. The resulting graph H is also extremal since it has the same number of cut-vertices as G, say r, but more edges. By Lemma 1.4, the number of blocks in H is r + 1. If n_i is the number of vertices in the *i*th block, then $n_i \ge 3$, since H has no cut-edge. Thus the number of edges in H is not more than

$$\max\left\{\sum_{i=1}^{r+1} \binom{n_i}{2} : \sum_{i=1}^{r+1} n_i = n+r, n_i \ge 3\right\}$$

= $3r + \binom{n-2r}{2}.$

The right hand expression is not greater than

$$r+1+\binom{n-r-1}{2}$$

whenever $r \ge 2$. But *H* has only *r* cut-vertices and this gives a contradiction to Theorem 1.3. Thus there is at most one cut-vertex in an extremal graph without any cut-edge.

LEMMA 1.7. If an extremal graph G with n vertices and m edges has no cut-edge, then either

(1)
$$m \ge \binom{n-1}{2} + 2$$

or

(2) G consists of a complete graph and a triangle attached to it by a common vertex.

Proof. Suppose (1) does not hold. Then G has exactly one cut-vertex by Lemma 1.6. Now making each block of G complete we get a graph consisting of two complete subgraphs attached by a common vertex. By Lemma 1.5, at least one of these complete subgraphs is a triangle. If the other block is not complete in G, then we can transfer one of the edges of the triangle to it, thereby increasing the number of cut-vertices. The impossibility of this proves the lemma.

Now we will prove the main result of this section. Let r = r(n, m) be given by (1.1).

THEOREM 1.8. The extremal graphs on n vertices with m edges are the following:

(1) a graph consisting of a subgraph on n_0 vertices with m_0 edges to which elementary chains of total length r are attached at distinct vertices, where

$$n_0 = n - r$$
 and $m_0 = m - r \ge \binom{n_0 - 1}{2} + 2.$

(2) a graph consisting of an elementary chain μ (which may be a single vertex) separating a complete graph at one end and a triangle at the other end, with elementary chains attached at distinct vertices not belonging to μ , where the sum of the lengths of μ and all the terminal chains is r - 1.

Proof. Let G be an extremal graph on n vertices with m edges. By successively removing a pendant vertex and its incident edge, we finally arrive at a subgraph H without pendant vertices such that G is obtained from H by attaching trees at some of the vertices of H. Each of these trees is an elementary chain, for otherwise we can increase the number of cut-vertices by replacing such a tree by a chain on the same number of vertices. Evidently now H is also extremal. Let n_0 , m_0 be the number of vertices and the number of edges respectively in H.

If H has no cut-vertex, then obviously G is of the type (1) of the theorem.

If H has a cut-vertex, then there is a unique elementary chain (which may be a single vertex) separating blocks on more than 2 vertices. For otherwise, by suppressing every such chain and identifying its end vertices we get an extremal graph without any cut-edge and with at least two cut-vertices, which is a contradiction to Lemma 1.6. By the same argument it follows from Lemma 1.7 that H consists of an elementary chain μ separating a complete graph at one end and a triangle at the other end. Obviously now G is of the type (2) of the theorem.

It is trivial to see that the minimum number of cut-vertices in a connected graph on *n* vertices with *m* edges is 0 or 1 according as $m \ge n$ or m = n - 1.

264

§2. Maximisation of the number of cut-edges.

LEMMA 2.1. The maximum number of cut-edges in a connected graph on n vertices is n - 1. This maximum is attained by any tree and by no other graph. This lemma can be easily proved using the concept of a spanning tree.

THEOREM 2.2. If $r \leq n-2$ then the number of edges in a connected graph G on n vertices with r cut-edges is not more than $\binom{n-r}{2} + r$.

Proof. Since $r \neq n-1$, G has at least one cycle and hence there are at least r+1 blocks, namely the r cut-edges and another block on at least 3 vertices. Now the proof of the lemma is similar to that of Theorem 1.2.

Given n, m such that $n \le m \le \binom{n}{2}$, let r = r(n,m) be given by (1.1). We assume below that $m \ge n$ since the case m = n - 1 is completely treated in Lemma 2.1.

THEOREM 2.3. The maximum number of cut-edges in a connected graph on n vertices with m edges is r.

The proof of this theorem utilizes Theorem 2.2 and is similar to that of Theorem 1.3.

We call a graph which attains the maximum number r of cut-edges an 'extremal' graph.

THEOREM 2.4. Any 'extremal' graph G on n vertices with m edges consists of a subgraph H on n_0 vertices and m_0 edges to which trees with a total of r edges are attached at some vertices, where $n_0 = n - r$, $m_0 = m - r \ge {\binom{n_0 - 1}{2}} + 2$. (The converse is obvious.)

Proof. As shown in the proof of Theorem 1.8, there exists a subgraph H without pendant vertices such that G is obtained from H by attaching trees at some of the vertices of H. Obviously now H is also 'extremal'. If H has a cut-edge, then by successively suppressing such edges and identifying their end vertices we get an 'extremal' graph without cut-edges and with at least one cut-vertex. If this graph has p vertices, then by Theorem 2.3 it has at least $\binom{p-1}{2} + 2$ edges and therefore does not have any cut-vertex. This contradiction shows that if n_0 , m_0 are the number of vertices and the number of edges of H respectively, then $n_0 = n - r$ and $m_0 = m - r \ge \binom{n-r}{2} + r$. This completes the proof of the theorem.

A. RAMACHANDRA RAO

It is easy to see that the minimum number of cut-edges in a connected graph on n vertices with m edges is 0 or n-1 according as $m \ge n$ or m = n-1.

I wish to thank Dr. C. Ramanujacharyulu for the many useful discussions I had with him about the contents of this paper. I am also thankful to Dr. U.S.R. Murty for suggesting this problem to me and to the referee for his comments on an earlier version of this paper.

Reference

1. C. Berge, The Theory of Graphs and its Applications, Methuen, London, 1962.

Indian Statistical Institute, Calcutta, India