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ABSTRACT 

I t  is p roved  tha t  the  m a x i m u m  n u m b e r  o f  cut-vert ices in a connected  graph  
wi th  n vertices and  m edges is 

/ C ) )  m a x  q : m  < + q  . 

All the extremal graphs are determined and the corresponding problem for 
cut-edges is also solved. 

In this paper we determine the maximum number of cut-vertices in a connected 
graph on n vertices with m edges and also the class of all extremal graphs, i.e., 
graphs which attain this maximum. The analogous problem for cut-edges is 
also solved. 

All graphs considered here are finite, undirected and without multiple edges 
or loops. 

For notation and terminology C. Berge [1] is followed. 
We will use the term cut-vertex (edge) for an articulation vertex (edge) of [1]. 
A block of a connected graph G is a subgraph of  G which is maximal with 

respect to the property of being connected and having no cut-vertex. 

§1. Maximisation of the number of cut-vertices. 

We start with a few preliminary results. 

LEM~A 1.1. A connected graph on n vertices (n > 2) has at most n - 2  
cut-vertices. Further, the only such graph with n-2 cut-vertices is the elementary 
chain on n vertices. 

This lemma can be easily proved by using the concept of a spanning tree. 

TrmOR~M 1.2. In a connected graph on n vertices with r cut-vertices, the 

maximumnumbero fedges i s  ( n - r )  2 + r .  

Proof. Let G be a connected graph on n vertices with r cut-vertices and with 
the maximum number of edges. Then obviously every block of G is complete 
and the number t of  blocks is not less than r + 1. Let ni be the number of vertices 
in the ith block for i = 1,2, . . . , t .  Then ns > 2 and it can be easily proved by 
induction on t that 

t 

~, n t = n + t - 1 .  
i = l  
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Thus the number of  edges in G is not more than 

max i : ~  n l = n + t _ l ,  nt>2, t ~ r + l  
t = 1  t = 1  

hra~l J. Math., 

n - r )  
= q - r .  

2 

But a complete graph on n - r vertices with an attached elementary chain of  

length r has n vertices, (n - r ) 2 + r edges and r cut-vertices. 
\ / 

This completes the proof  of the theorem. (n) 
Given n, m such that n -< m < 2 ' let us define 

We assume below that m > n as the case m = n - 1 is trivial and is treated com- 
pletely in Lemma 1.1. 

T~mOP,~M 1.3. The maximum number of cut-vertices in a connected graph 

on n vertices with m edges is r = r(n,m) given by (1.1). 

Proof. By Theorem 1.2, if a connected graph G on n vertices has r + 1 

or more cut-vertices then the number of  edges in G is not more than 

( n - ' - l )  
2 + r + l < m .  

Hence the number of cut-vertices in any connected graph on n vertices with m 
edges is not more than r. To construct a connected graph with n vertices, m 
edges and exactly r cut-vertices, take any biconnected graph on n -  r vertices 

with m -  r edges 

~ ~ 2 J 

and attach to one of  its vertices an elementary chain of  length r. This proves the 

theorem. 
Now we determine the extremal graphs, i.e., connected graphs on n vertices 

with m edges and with r(n,m) cut-vertices. 

L~vtA 1.4. In an extremal graph G there cannot be more than 2 pieces 

with respect to any cut.vertex. 
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Proof. If  there are at least 3 pieces with respect to a cut-vertex x of G, we can 
remove one of  the pieces (without the vertex x itself) and attach it at a non-cut- 
vertex of the remaining graph, thereby increasing the number of  cut-vertices. 
The impossibility of this proves the lemma. 

LEMMA 1.5. The graph G consisting of two complete graphs, each on more 
than 3 vertices, attached by a common vertex, is not extremal. 

Proof. Let r, s be the numbers of vertices in the two complete subgraphs of G 
so that the number n of vertices in G is r + s - 1. Then the number of  edges in G 
is not more than 

,max / 
r + a = n + l  

Hence i f  G is extremal, then by Theorem 1.3 G has at least 2 cut-vertices, a con- 
tradiction. 

L E ~  1.6. An extremal graph G without any cut-edge has at most one 
cut-vertex. 

Proof. Adding new edges if necessary we make every block of  G complete. 
The resulting graph H is also extremal since it has the same number of cut-vertices 
as G, say r, but more edges. By Lemma 1.4, the number of  blocks in H is r + 1. 

If  n i is the number of vertices in the ith block, then ni > 3, since H has no cut- 
edge. Thus the number of edges in H is not more than 

max : ~ n ~ = n + r ,  n i>3  
/ i = l  1=1  

The right hand expression is not greater than 

whenever r ~ 2. But H has only r cut-vertices and this gives a contradiction to 
Theorem 1.3. Thus there is at most one cut-vertex in an extremal graph without 
any cut-edge. 

L E ~  1.7. I f  an extremal graph G with n vertices and m edges has no 
cut-edge, then either 
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(1) m >  ( n - 1  ) 
= 2 + 2  

o r  

(2) G consists of  a complete graph and a triangle attached to it by a common 

vertex. 

Proof. Suppose (1) does not hold. Then G has exactly one cut-vertex by 
I.emma 1.5. Now making each block of G complete we get a graph consisting of 
two complete subgraphs attached by a common vertex. By Lemma 1.5, at least 
one of these complete subgraphs is a triangle. If the other block is not complete 
in G, then we can transfer one of the edges of the triangle to it, thereby increasing 
the number of cut-vertices. The impossibility of this proves the lemma. 

Now we will prove the main result of this section. Let r = r(n, m) be given 
by (1.1). 

THEOREM 1.8. The extremal graphs on n vertices with m edges are the 

following: 
(1) a graph consisting of a subgraph on n o vertices with mo edges to which 

elementary chains of total length r are attached at distinct vertices, where 

n o = n - r a n d m o = m - r >  = ( n ° - I  ) 2 +2 .  

(2) a graph consisting of an elementary chain # (which may be a single 
vertex) separating a complete graph at one end and a triangle at the other 

end, with elementary chains attached at distinct vertices not belonging to p, 
where the sum of the lengths of l~ and all the terminal chains is r -  1. 

Proof. Let G be an extremal graph on n vertices with m edges. By successively 
removing a pendant vertex and its incident edge, we finally arrive at a subgraph H 
without pendant vertices such that G is obtained from H by attaching trees at 
some of the vertices of H. Each of these trees is an elementary chain, for otherwise 
we can increase the number of cut-vertices by replacing such a tree by a chain on 
the same number of vertices. Evidently now H is also extremal. Let no, mo be the 
number of vertices and the number of edges respectively in H. 

If H has no cut-vertex, then obviously G is of the type (1) of the theorem. 
If H has a cut-vertex, then there is a unique elementary chain (which may be a 

single vertex) separating blocks on more than 2 vertices. For otherwise, by suppres- 
sing every such chain and identifying its end vertices we get an extremal graph 
without any cut-edge and with at least two cut-vertices, which is a contradiction 
to Lemma 1.6. By the same argument it follows from Lemma 1.7 that H consists 
of an elementary chain # separating a complete graph at one end and a triangle 
at the other end. Obviously now G is of the type (2) of the theorem. 

It is trivial to see that the minimum number of cut-vertices in a connected graph 
on n vertices with m edges is 0 or 1 according as m >= n or m = n - 1. 
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§2. Maximisation of the number of cut-edges. 

LEMMA 2.1. The maximum number of cut-edges in a connected graph on n 
vertices is n - 1. This maximum is attained by any tree and by no other graph. 

This lemma can be easily proved using the concept of a spanning tree. 

THEOREM 2.2. I f  r < n -- 2 then the number of edges in a connected graph G 

o n n v e r t i c e s w i t h  r c u t - e d g e s i s n o t m o r e t h a n  ( ~ - ~ )  2 + r .  

ProoL Since r ~ n - 1, G has at least one cycle and hence there are at least 
r + 1 blocks, namely the r cut-edges and another block on at least 3 vertices. 
Now the proof of the lemma is similar to that of Theorem 1.2. 

Given n, m such that n <  m <  ( 2 ) '  let r =  r ( n , m ) b e  given by (1.1). We 
/ 

assume below that m > n since the case m = n - 1 is completely treated in Lemma 
2.1. 

THEOREM 2.3. The maximum number of cut-edges in a connected graph 
on n vertices with m edges is r. 

The proof of this theorem utilizes Theorem 2.2 and is similar to that of Theorem 
1.3. 

We call a graph which attains the maximum number r of cut-edges an 'extremal' 
graph. 

THEOREM 2.4. Any 'extremal' graph G on n vertices with m edges consists 
of a subgraph H on n o vertices and m o edges to which trees with a total of r edges 

are attache d at some vertices, where n o = n - r ,  mo=m_r>(no2- 1)+- 2. 
\ - -  I 

(T he  converse is obvious.) 

Proofl As shown in the proof of Theorem 1.8, there exists a subgraph H 
without pendant vertices such that G is obtained from H by attaching trees at 
some of the vertices of H. Obviously now H is also 'extremal'. If H has a cut-edge, 
then by successively suppressing such edges and identifying their end vertices 
we get an 'extremal' graph without cut-edges and with at least one cut-vertex. 

If  this graph has p vertices, then by Theorem 2.3 it has at least - ( P 2  1)" + 2 
\ / 

edges and therefore does not have any cut-vertex. This contradiction shows that 
if no, m0 are the number of vertices and the number of edges of H respectively, 

t h e n n o = n - r a n d m o = m - r  > ( n - r )  = 2 + r. This completes the proof of 

the theorem. 
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I t  is easy to  see tha t  the m i n i m u m  number  o f  cut-edges in a connec ted  graph  

on  n vertices wi th  m edges is 0 or  n - 1 accord ing  as m > n o r  m = n - 1. 
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