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ABSTRACT

It is proved that the maximum number of cut-vertices in a connected graph
with # vertices and m edges is

n—q
max {q:m g( ) ) +q}.
All the extremal graphs are determined and the corresponding problem for
cut-edges is also solved.

In this paper we determine the maximum number of cut-verticesin a connected
graph on n vertices with m edges and also the class of all extremal graphs, i.e.,
graphs which attain this maximum. The analogous problem for cut-edges is
also solved.

All graphs considered here are finite, undirected and without multiple edges
or loops.

For notation and terminology C. Berge [1] is followed.

We will use the term cut-vertex (edge) for an articulation vertex (edge) of [1].

A block of a connected graph G is a subgraph of G which is maximal with
respect to the property of being connected and having no cut-vertex.

§1. Maximisation of the number of cut-vertices.

We start with a few preliminary results.

Lemma 1.1. A4 connected graph on n vertices (n>2) has at most n—2
cut-vertices. Further, the only such graph with n-2 cut-vertices is the elementary

chain on n vertices.
This lemma can be easily proved by using the concept of a spanning tree.

THEOREM 1.2. In a connected graph on n vertices with r cut-vertices, the

maximum number of edges is (n ; r) +r

Proof. Let G be a connected graph on n vertices with r cut-vertices and with
the maximum number of edges. Then obviously every block of G is complete
and the number ¢ of blocks is not less than r + 1. Let n, be the number of vertices
in the ith block for i =1,2,.--,z. Then n,=>2 and it can be easily proved by
induction on ¢ that

t
Z n,-=n+t—-l.
i=1
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Thus the number of edges in G is not more than

t

t
max:E (’;’) n,=n+t-—1,nigz,tgr+1}
i=1

i=1 =

— ax ‘t_1+(n+t—1—2t+2)}

tzr+1 2

Y Lk A W

5 .
But a complete graph on n — r vertices with an attached elementary chain of
n—r

2
This completes the proof of the theorem.

length r has n vertices, ( ) + r edges and r cut-vertices.

Given n,m such that n <m < ( ; ), let us define

(1.1) r(n, m) = max {q:qgn—3 andm§(n;q)+q}.
We assume below that m = n as the case m = n — 1is trivial and is treated com-
pletely in Lemma 1.1,

THEOREM 1.3. The maximum number of cut-vertices in a connected graph
on n vertices with m edges is r = r(n,m) given by (1.1).

Proof. By Theorem 1.2, if a connected graph G on n vertices has r+1
or more cut-vertices then the number of edges in G is not more than

(n—;—1)+r+1<m.

Hence the number of cut-vertices in any connected graph on n vertices with m

edges is not more than r. To construct a connected graph with n vertices, m
edges and exactly r cut-vertices, take any biconnected graph on n — r vertices

with m — r edges
n—r
(n—rgm—ré( 2 )),

and attach to one of its vertices an elementary chain of length r. This proves the
theorem.

Now we determine the extremal graphs, i.e., connected graphs on n vertices
with m edges and with r(n,m) cut-vertices.

LEMMA 1.4. In an extremal graph G there cannot be more than 2 pieces
with respect to any cut-vertex.
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Proof. If there are at least 3 pieces with respect to a cut-vertex x of G, we can
remove one of the pieces (without the vertex x itself) and attach it at a non-cut-
vertex of the remaining graph, thereby increasing the number of cut-vertices.
The impossibility of this proves the lemma.

LEMMA 1.5. The graph G consisting of two complete graphs, each on more
than 3 vertices, attached by a common vertex, is not extremal.

Proof. Let r, s be the numbers of vertices in the two complete subgraphs of G
so that the number n of vertices in G is r + s — 1. Then the number of edges in G
is not more than

() (3))

r+s=n+1

4 n—3 n—2
(D (3= r2erom
Hence if G is extremal, then by Theorem 1.3 G has at least 2 cut-vertices, a con-
tradiction.

LemMMA 1.6. An extremal graph G without any cut-edge has at most one
cut-vertex.

Proof. Adding new edges if necessary we make every block of G complete.
The resulting graph H is also extremal since it has the same number of cut-vertices
as G, say r, but more edges. By Lemma 1.4, the number of blocks in H is r + 1.
If n; is the number of vertices in the ith block, then n; 2 3, since H has no cut-
edge. Thus the number of edges in H is not more than

r+1 n rd1
max{z (’): ni=n+r,n,-g3}
=1

i=1 2 i=

n—2r
= 3r+( ) )

The right hand expression is not greater than

r+1+ n—r—1
2

whenever r 2 2. But H has only r cut-vertices and this gives a contradiction to
Theorem 1.3. Thus there is at most one cut-vertex in an extremal graph without
any cut-edge.

LemMa 1.7. If an extremal graph G with n vertices and m edges has no
cut-edge, then either
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) m2 (";1)+2

or
(2) G consists of a complete graph and a triangle attached to it by a common
vertex.

Proof. Suppose (1) does not hold. Then G has exactly one cut-vertex by
Lemma 1.6. Now making each block of G complete we get a graph consisting of
two complete subgraphs attached by a common vertex. By Lemma 1.5, at least
one of these complete subgraphs is a triangle. If the other block is not complete
in G, then we can transfer one of the edges of the triangle to it, thereby increasing
the number of cut-vertices. The impossibility of this proves the lemma.

Now we will prove the main result of this section. Let r = r(n,m) be given
by (1.1).

THEOREM 1.8. The extremal graphs on n vertices with m edges are the
Jollowing:

(1) a graph consisting of a subgraph on n, vertices with my edges to which
elementary chains of total length r are attached at distinct vertices, where

2
(2) a graph consisting of an elementary chain u (which may be a single
vertex) separating a complete graph at one end and a triangle at the other
end, with elementary chains attached at distinct vertices not belonging to p,
where the sum of the lengths of p and all the terminal chains is r — 1.

np=n—rand my=m—r= (n°_1)+2.

Proof. Let G be an extremal graph on n vertices with m edges. By successively
removing a pendant vertex and its incident edge, we finally arrive at a subgraph H
without pendant vertices such that G is obtained from H by attaching trees at
some of the vertices of H. Each of these trees is an elementary chain, for otherwise
we can increase the number of cut-vertices by replacing such a tree by a chain on
the same number of vertices. Evidently now H is also extremal. Let n,, m, be the
number of vertices and the number of edges respectively in H.

If H has no cut-vertex, then obviously G is of the type (1) of the theorem.

If H has a cut-vertex, then there is a unique elementary chain (which may be a
single vertex) separating blocks on more than 2 vertices. For otherwise, by suppres-
sing every such chain and identifying its end vertices we get an extremal graph
without any cut-edge and with at least two cut-vertices, which is a contradiction
to Lemma 1.6. By the same argument it follows from Lemma 1.7 that H consists
of an elementary chain u separating a complete graph at one end and a triangle
at the other end. Obviously now G is of the type (2) of the theorem.

It is trivial to see that the minimum number of cut-vertices in a connected graph
on n vertices with m edges is 0 or 1 accordingasm=norm=n-1.
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§2. Maximisation of the number of cut-edges.

LemMA 2.1. The maximum number of cut-edges in a connected graph on n
vertices is n — 1. This maximum is attained by any tree and by no other graph.

This lemma can be easily proved using the concept of a spanning tree.

THEOREM 2.2. If r < n — 2 then the number of edges in a connected graph G

, , . n—r
on n vertices with r cut-edges is not more than ( ) )+ r.

Proof. Since r n — 1, G has at least one cycle and hence there are at least
r + 1 blocks, namely the r cut-edges and another block on at least 3 vertices.
Now the proof of the lemma is similar to that of Theorem 1.2.

Given n, m such that n S m < (Z), let r = r(n,m) be given by (1.1). We

assume below that m > n since the case m = n — 1 is completely treated in Lemma
2.1.

THEOREM 2.3. The maximum number of cut-edges in a connected graph
on n vertices with m edges is r.

The proof of this theorem utilizes Theorem 2.2 and is similar to that of Theorem
1.3.

We call a graph which attains the maximum number r of cut-edges an ‘extremal’
graph.

THEOREM 2.4. Any ‘extremal’ graph G on n vertices with m edges consists
of a subgraph H on n,, vertices and m, edges to which trees with a total of r edges

. ne — 1
are attached at some vertices, where no=n—r, mp=m-—rz ( 02 ) + 2.
(T he converse is obvious.)

Proof. As shown in the proof of Theorem 1.8, there exists a subgraph H
without pendant vertices such that G is obtained from H by attaching trees at
some of the vertices of H. Obviously now H is also ‘extremal’. If H has a cut-edge,
then by successively suppressing such edges and identifying their end vertices
we get an ‘extremal’ graph without cut-edges and with at least one cut-vertex.

. . . -1
If this graph has p vertices, then by Theorem 2.3 it has at least ( P » )+ 2
edges and therefore does not have any cut-vertex. This contradiction shows that
if ny, m, are the number of vertices and the number of edges of H respectively,

then no=n—-rand mp=m-—-r = (n ; r) + r. This completes the proof of

the theorem.
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It is easy to see that the minimum number of cut-edges in a connected graph
on n vertices with m edges is 0 or n — 1 accordingas m=norm=n-— 1.

I wish to thank Dr. C. Ramanujacharyulu for the many useful discussions I
had with him about the contents of this paper. I am also thankful to Dr. U.S.R.
Murty for suggesting this problem to me and to the referee for his comments
on an earlier version of this paper.
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